关于pearson相关系数的意义(相关系数有什么意义和作用-)
本文共计2110个文字,预计阅读时间需要6分53秒,由作者编辑整理创作于2023年10月01日 04点14分43秒。
关于pearson相关系数的意义
1、用spss的相关分析算出pearson系数后,可以根据系数的大小进行相关性强弱的比较吗?比如A、B、C与Y都是显著相关(两个*),可以通过相关系数来比较ABC对Y的影响力大小吗?
2、如果要证明A、B、C是Y的影响因素,只用相关分析得出显著相关就可以了吗?
1.相关系数只能说明关性的强弱,没有方向性的。比较(A、B、C)->Y的影响力,应进行多元线性回归分析,比较标准化回归系数大小。
2.要证明A、B、C是Y的影响因素,只用相关分析得出显著相关,是不够的。
详请看
http://zhidao.baidu.com/question/23035036.html
相关系数有什么意义和作用?
相关系数取值一般在-1~1之间。绝对值越接近1说明变量之间的线性关系越强,绝对值越接近0说明变量间线性关系越弱。相关系数r的绝对值一般在0.8以上,认为A和B有强的相关性。0.3到0.8之间,可以认为有弱的相关性。0.3以下,认为没有相关性。皮尔逊相关系数变化从-1到 +1,当r>0表明两个变量是正相关,即一个变量的值越大,另一个变量的值也会越大;r<0表明两个变量是负相关,即一个变量的值越大另一个变量的值反而会越小。扩展资料;
相关系数有一个明显的缺点,即它接近于1的程度与数据组数n相关,这容易给人一种假象。因为,当n较小时,相关系数的波动较大,对有些样本相关系数的绝对值易接近于1;当n较大时,相关系数的绝对值容易偏小。特别是当n=2时,相关系数的绝对值总为1。因此在样本容量n较小时,我们仅凭相关系数较大就判定变量x与y之间有密切的线性关系是不妥当的。参考资料来源:百度百科-相关系数
下面分享相关内容的知识扩展:
直线相关系数名词解释
相关系数有如下几种:
1、简单相关系数:又叫相关系数或线性相关系数。它一般用字母r 表示。它是用来度量定量变量间的线性相关关系。
2、复相关系数:又叫多重相关系数。复相关是指因变量与多个自变量之间的相关关系。例如,某种商品的需求量与其价格水平、职工收入水平等现象之间呈现复相关关系。
3、偏相关系数:又叫部分相关系数。部分相关系数反映校正其它变量后某一变量与另一变量的相关关系,校正的意思可以理解为假定其它变量都取值为均数。 偏相关系数的假设检验等同于偏回归系数的t检验。 复相关系数的假设检验等同于回归方程的方差分析。
4、典型相关系数:是先对原来各组变量进行主成分分析,得到新的线性无关的综合指标,再用两组之间的综合指标的直线相关系敷来研究原两组变量间相关关系。
5、可决系数是相关系数的平方。意义:可决系数越大,自变量对因变量的解释程度越高,自变量引起的变动占总变动的百分比高。观察点在回归直线附近越密集。
如何判断两个变量之间存在相关性系数?
首先看显著性值,也就是sig值或称p值。它是判断r值,也即相关系数有没有统计学意义的。
判定标准一般为0.05。
由表可知,两变量之间的相关性系数r=-0.035,
其p值为0.709>0.05,所以相关性系数没有统计学意义。
无论r值大小,都表明两者之间没有相关性。
如果p值<0.05,那么就表明两者之间有相关性。
然后再看r值,|r|值越大,相关性越好,正数指正相关,负数指负相关。
一般认为:
|r|大于等于0.8时为两变量间高度相关;
|r|大于等于0.5小于0.8时认为两变量中度相关;
|r|大于等于0.3小于0.5时认为两变量低度相关或弱相关,
|r|小于0.3说明相关程度为极弱相关或无相关。
所以判断相关性,先看p值,看有没有相关性。
再看r值,看相关性是强还是弱。
方差 期望 协方差 相关系数 各描述了什么
方差 期望 协方差 相关系数 各描述了什么 或者说实际意义是什么方差描述了一组数列的波动情况,如果一个数列都是1种数,如1,1,1,1,1,1 那么它的方差为0
期望其实就是一组数的平均值
协方差是建立在方差分析和回归分析基础之上的一种统计分析 ***
两个不同参数之间的方差就是协方差
相关系数r
相关系数是变量之间相关程度的指标。样本相关系数用r表示,总体相关系数用ρ表示,相关系数的取值范围为[-1,1]。|r|值越大,误差Q越小,变量之间的线性相关程度越高;|r|值越接近0,Q越大,变量之间的线性相关程度越低。
相关系数 又称皮(尔生)氏积矩相关系数,说明两个现象之间相关关系密切程度的统计分析指标。
相关系数用希腊字母γ表示,γ值的范围在-1和+1之间。
γ>0为正相关,γ<0为负相关。γ=0表示不相关;
γ的绝对值越大,相关程度越高。
两个现象之间的相关程度,一般划分为四级:
如两者呈正相关,r呈正值,r=1时为完全正相关;如两者呈负相关则r呈负值,而r=-1时为完全负相关。完全正相关或负相关时,所有图点都在直线回归线上;点子的分布在直线回归线上下越离散,r的绝对值越小。当例数相等时,相关系数的绝对值越接近1,相关越密切;越接近于0,相关越不密切。当r=0时,说明X和Y两个变量之间无直线关系。通常|r|大于0.75时,认为两个变量有很强的线性相关性。
相关系数的计算公式为:
其中xi为自变量的标志值;i=1,2,…n;■为自变量的平均值,
为因变量数列的标志值;■为因变量数列的平均值。
为自变量数列的项数。对于单变量分组表的资料,相关系数的计算公式为:
其中fi为权数,即自变量每组的次数。在使用具有统计功能的电子计算机时,可以用一种简捷的 *** 计算相关系数,其公式为:
使用这种计算 *** 时,当计算机在输入x、y数据之后,可以直接得出n、■、∑xi、∑yi、∑■、∑xiy1、γ等数值,不
必再列计算表。
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。